Matter that accumulates onto the surface of an accreting neutron star undergoes thermonuclear burning. This process can be unstable and result in a sudden, bright flash of X-ray emission that is referred to as a thermonuclear X-ray burst (or type-I X-ray burst).
Thousands of X-ray bursts have been observed from about 100 neutron star X-ray binaries. Most of these events last about 10-100 seconds, have an energy output of ~10^39 erg (which is far more energetic than an atomic bomb!) and repeat on a timescale of minutes to hours. On rare occasions, however, X-ray bursts have been observed that are both longer (tens of minutes to hours) and 10-100 times more energetic. A few tens of such intermediately long X-ray bursts have been observed to date.
On 2010 August 13, the Burst Alert Telescope (BAT) onboard the Swift satellite triggered on an event coming from the direction of the neutron star X-ray binary XMMU J174716.1-281048. We analyzed the Swift data and found that the BAT had caught an intermediately long X-ray burst from this X-ray binary, which had a duration of nearly 3 hours. This was only the second X-ray burst ever recorded from this source.
The X-ray emission of XMMU J174716.1-281048 is unusually faint for an X-ray binary. This suggests that matter is transferred to the neutron star at a very slow rate. This might be the reason why the neutron star does not display regular X-ray bursts, but rather these rare energetic ones.
Degenaar, Wijnands & Kaur 2011, MNRAS Letters 414, L104: Swift detection of an intermediately long X-ray burst from the very faint X-ray binary XMMU J174716.1-281048
Paper link: ADS
You must be logged in to post a comment.