To be or not to be superfluid

Neutron stars have masses up to about 2.5 times the mass of our Sun, but their radii are nearly 50 thousand times smaller. This means that the matter that makes up neutron stars must be squeezed incredibly close together. In fact, neutron stars present the densest observable form of matter in the Universe. While in black holes matter is even more tightly packed, it is all hidden behind an event horizon and hence beyond our reach. For neutron stars, however, we can observe radiation from their surface and use that to infer what they look like on the inside. Neutron stars allow us to study how matter behaves when it is crushed to enormously high densities, conditions that we cannot replicate and study in laboratories on Earth.

Neutron stars are thought to have a 1-km thick solid crust, below which matter occurs in liquid form. It is generally thought that this liquid must be superfluid, meaning that it swirls around freely without experiencing any friction. On Earth, such fascinating, odd behavior is observed when liquid helium is cooled down to extremely low temperatures of about -270 degrees Celsius. There are, however, many uncertainties about how a superfluid works at the millions of degrees Celsius temperatures inside neutron stars. As a result, it is far from understood what the superfluid properties of neutron stars are exactly. This is very important to establish, as it likely has a profound effect on how various neutron star properties, such as their magnetic field strength, spin and interior temperature, evolve over their lifetime. Moreover, several observable phenomena of neutron stars, such as occasional distortions in their rotation called glitches or sudden cracking of their crust analogous to Earth quakes, likely depend on the detailed properties of their interior superfluid.

Since we cannot perform experiments on Earth that teach us how superfluids inside neutron stars may work, we need to reverse the problem. One promising way to do this is to track how a neutron star cools down after it has been heated up by gobbling up gas from a companion star. We call this cannibalistic action accretion and often this happens in spurts that we call  outbursts. The superfluid properties of its interior should influence both the extend to which the neutron star can be heated during accretion outbursts, and how its temperature then subsequently decreases when accretion stops and hence there is no more heat generation. One such neutron star that we previously established to be heated and subsequently cooling down is called HETE J1900.1-2455. In a previous study we tracked its temperature decrease and our modeling suggested that the neutron star would cool further. After having waited a few years, we took a new observation of the source with the Chandra X-ray satellite to verify this.

Chandra pointed towards our neutron star for over half a day and surprisingly saw almost nothing! HETE J1900.1-2455 turned out to have cooled so much that it was hardly generating any detectable X-ray emission, even for the very sensitive X-ray detector of Chandra. In the 16 hours that Chandra started at it, a mere 5 X-ray light particles were capture from the neutron star. In order words, only every 3 hours was the Chandra detector hit by an X-ray light particle from HETE J1900.1-2455. Perhaps somewhat counter-intuitive, the fact that we detected so little light from the source actually provides us with very interesting constraints on its interior properties. Performing a rigorous and conservative analysis (based on those 5 light particles!) we inferred the likely temperature of the neutron star and performed highly advanced simulations that take into account the physical properties of neutron stars, including their interior superfluid.

Our analysis revealed that the low temperature of HETE J1900.1-2455 must imply that it is able to cool its interior extremely rapidly. Two exciting possibilities that would allow for this is either that the neutron star is very massive or that a large fraction of its core is not superfluid. The latter option would contrast the general belief and would have profound implications for our understanding of many observable properties of neutron stars. The former option would be a very important finding because the most massive neutron stars put the strongest constraints on the behavior of ultra-dense matter.  Although both options are equally exciting, our current observations do not allow us to distinguish between the two. However, because of the significant science impact, Chandra will again point towards HETE J1900.1-2455 to allow us to obtain a new temperature measurement. This time, it will not stare at the neutron star for 16 hours, but for 6 full days!! If its temperature remained stable, we will then collect 50 X-ray light particles and be able to obtain a much more reliable temperature estimate. If it cooled further, however, we might not see any light at all. Ironically, the latter case would be the most exciting outcome. Part of the data has recently been taken and the remaining observations will come in soon. I can wait to find out what we will (not) see in those new Chandra observations!

Degenaar, Page, van den Eijnden, Beznogov, Renolds, Wijnands 2021, MNRAS 508, 882: Constraining the properties of dense neutron star cores: the case of the low-mass X-ray binary HETE J1900.1-2455

Paper link: ADS

Observations (green points) and simulations (colored curves) of the temperature evolution of the neutron star in HETE J1900 during and after its 11-year long accretion outburst. Whereas we derive an ultra-low temperature of around 35 eV from our 2018 observation, the simulations predict that the neutron star may cool even further to an all-time low of about 15 eV.

The mystery of unbreakable radio jets

Black holes and neutron stars are notorious for sucking material from their surroundings towards themselves, a process that we call accretion. However, both types of objects also blast material back into space, for instance via highly collimated streams of gas and energy that we call jets. The material that is hurdling towards black holes and neutron stars, the accretion flow, is hot and emits heat radiation at X-ray wavelengths. The jets, on the other hand, emit radiation at radio wavelengths.

It is natural to assume that there is some kind of connection between how (much) material is flowing in and how (much) is pushed out in a radio jet. Indeed, a strong correlation between the X-ray and radio brightness is observed for both black holes and neutron stars, which points towards a strong connection. For black holes, it has also been observed that when material is flowing in extremely rapidly, it is no longer possible to push out a continuous jet. Rather, when matter is pushing in at high speed, it is spewed out in spurts while the continuous steady jet seen at low accretion rates disappears. The latter is observed as a sudden strong reduction in the radio brightness once the X-ray luminosity, hence the rate of matter inflow, climbs up to very high levels. Surprisingly, some neutron stars do not show a strong reduction of their radio brightness when we see them move up to high accretion rates. It therefore appears that, somehow, these neutron stars are able to sustain their continuous, steady radio jets. It is a long-standing puzzle why this is the case.

In a recent study, we investigated the coupled radio and X-ray behavior of the accreting neutron star 4U 1820-30. This is one of those few neutron stars that was thought to sustain its continuous radio jets because its radio brightness never becomes very low. What we found, however, is that the brightness at different radio frequencies does vary by a lot causing the radio energy spectrum to change strongly. In particular, we found that between X-ray “low and high modes” that differ a factor of about 10 in X-ray brightness, 4U 1820-30 is switching between sending out a steady continuous jet and ballistic ejections, represented by the two different radio spectra. Contrary to what was thought, the neutron star is thus not sustaining its steady jets, but behaving in the same way as black holes. These findings motivate similar studies of other neutron stars as well as a more detailed study of 4U 1820-30 itself to resolve the changes on shorter timescales (days or even hours) than we have done now (weeks).

Russell, Degenaar, van den Eijnden, Del Santo, Segreto, Altamirano, Beri, Diaz Trigo, Miller Jones 2020, MNRAS 508, L6: The evolving radio jet from the neutron star X-ray binary 4U 1820-30

Paper link: ADS

Radio observations of 4U1820 during its X-ray high and low modes. The figure shows that there is a clear difference in the radio spectrum between low modes (for instance the green, red and yellow data points+curves) and high modes (for instance the blue, purple and pink data points+curves). These large changes are highly surprising since the change in X-ray luminosity between the two modes is very small (a factor of 2 or so) and also the X-ray spectrum remains largely the same.

Calling all telescopes for duty

In late 2018, the Neil Gehrels Swift observatory (Swift), discovered a new bright source lighting up the X-ray sky. It was called Swift J1858.6-0814, or shortly Swift J1858, and soon realized to be an X-ray binary: a system of two stars orbiting around each other where one of the two is a black hole or a neutron star and the other a regular star. These objects shine bright in X-rays (and at other wavelengths) when the black hole or neutron star is able to pull gas from its companion towards itself. Often this happens only sporadically during episodes that we call outbursts.

About two hundred X-ray binaries are currently known in our Galaxy and many of these have been extensively studied since the dawn of X-ray astronomy in the late 1960s. Swift J1858 immediately stood out, however, by displaying extreme behavior in which the X-ray emission changed by orders of magnitude on short (hours) time scales. Only a handful of other X-ray binaries had ever been observed to display similarly volatile behavior as Swift J1858. Perhaps the most prominent one of those is the infamous black hole V404 Cygni. Based on this analogy, Swift J1858 was therefore expected to habor a black hole too.

The extreme behavior of Swift J1858 drew a lot of attention in the X-ray binary community and motivated a massive multi-wavelength campaign involving many ground-based and space-based observatories. The fleet of facilities pointing to Swift J1858 involved, for instance, ESA’s XMM-Newton satellite (X-rays), NASA’s NICER mission located on the International Space Station (X-rays), the Hubble Space Telescope (UV), the Very Large Telescope in Chile (UV/optical/infrared), the 10-m Grantecan telescope on La Palma (optical/infrared), the Very Large Array in New Mexico USA (radio) and the Atacama Telescope Compact Array in Australia (radio). All these efforts allowed for an unprecedented characterization of the binary and its extreme variability.

X-ray studies suggested that Swift J1858 was very rapidly swallowing gas from its companion, but our radio studies showed that it was also blasting a bright collimated jet into space. Moreover, our X-ray and optical studies showed that it was also blowing material into space via a disk wind. One of the most surprising discoveries was that Swift J1858 turned out to harbor a neutron star rather than a black hole. This was established by the detection of a thermonuclear explosion from the source, a so-called type-I X-ray burst, which cannot be produced by a black hole because they lack a surface. Neutron stars might be tiny, but they can truly be as violent as black holes!

Swift J1858 is now dormant, but our ambitious multi-wavelength campaign has delivered an incredibly rich data set for us to analyze and interpret. A first series of papers reporting on the findings at different wavelengths has already been published, but the analysis is ongoing. In particular, correlating all the data sets obtained at different wavelengths is expected to result in new discoveries that will help us understand how accretion and associated outflows work, and why Swift J1858 showed such extreme behavior. So there is more to come!

Paper links (ADS):

ATCA light curve of Swift J1858 showing that is was also extremely variable in the radio band. This light curve is taken from van den Eijnden et al. 2020

A very controversial black hole

As their name suggests, black holes do not emit any light. However, these dark entities can be spotted through the effect of their strong gravity on their surroundings. For instance, gas that is pulled towards a black hole will light up in X-rays and thereby give away the hiding place of the cosmic cannibal.

Based on what we currently understand of how stars are formed and evolve through their life, it is expected that our Milky Way galaxy should harbor hundreds of thousands, perhaps millions of black holes as the remains of once massive stars. Many of these stellar corpses are expected to be accompanied by another (regular) star. If the black hole and the other star orbit each other close enough, the black hole can steal gas from its unfortunate companion and make the binary discoverable as an X-ray binary. However, only a few tens of X-ray binaries harboring black holes have been found to date (see this catalog called BLACKCAT). We therefore think that there must be many black holes hiding in binaries with orbits that are so wide that the black hole cannot snack off its companion and hence will be discoverable as an X-ray binary. How to find these hidden black holes?

Even if a black hole is not close enough to pull gas from its companion, its gravitational pull will cause the other star to wobble. Stars are too far away to see them wobble against the sky, but we can detect any movement by unraveling their light with spectrometers. The light that we receive from stars contains dark lines, called spectral lines, that will be shifting in wavelength due to the wobble that the black hole is causing. Many millions of stars are currently being surveyed to see if their spectral lines display shifts that can give away the presence of a black hole. Recently one of such surveys, performed with the Chinese LAMOST telescope, uncovered a black hole by these means. The object, called LB-1, was announced to have a mass of no less than 70 times the mass of our Sun. This discovery soon became controversial.

The notorious LB-1 startled the scientific community because within our current understanding of how stars work it is far from trivial to make a black hole that is 70 times as massive as our Sun. In short, the challenge is that such a black hole would likely be the remains of a very massive star, but that such very massive stars are thought to explode in such a violent  supernova that nothing, not even a black hole, is left behind. Within a short time, many alternative ideas have thus been put out to explain how such a massive black hole could theoretically form. At the same time, there are many observational efforts initiated to verify that LB-1 truly contains such a massive black hole.

Observations with the Chandra X-ray satellite showed that if LB-1 contains a black hole, it is not pulling sufficient amounts of gas from its companion star to generate X-ray emission. However, if it would succeed to pull off even the tiniest bit of gas, it could also reveal itself by spitting some of this back into space via jets. The radio emission from the jets that a black hole spits out may be more easily detectable than the X-rays from the gas it is pulling in. Therefore, we’ll be looking at LB-1 with the Very Large Array radio telescope, located in New Mexico. If there is a massive black hole lurking in LB-1 that it secretly stealing some gas from its companion star, it will be caught in the act. Stay tuned!

Shortly after the discovery of LB-1, I gave an interview for Dutch radio to discuss its impact and controversy (for the NPO/radio-1 program “Met het oog op morgen“).

640px-Doppler_shiftFigure: Graphic illustration of the method to find hidden black holes. Whereas the black hole itself may be invisible, its gravitational pull causes the normal star to wobble. This wobble is visible as a movement in the spectral lines in the light of the star (the dark lines in the color bar). The same method is used to find planets around stars. Source of gif: Wikicommons.

Crazy jet experiment

Neutron stars and black holes are notorious for their strong gravity that allows them pull gas from their surrounds. However, apart from swallowing material, these stellar cannibals also spit large amounts of it back into space via so-called jets.

Jets are streams of gas and energy that are being blown into space by an astronomical body that is accreting. X-ray binaries are a prime example of accreting systems that produce jets, but these outflows are seen in a wide variety of astronomical systems, including young forming stars, white dwarfs and supermassive black holes that lurk in the centers of galaxies. Jets play a fundamental role throughout the universe, including the birth and death of stars, the growth and evolution of galaxies, and the formation of large-scale structures (the cosmic web).

X-ray binary jets have an enormous impact on a variety of processes. Firstly, jets remove mass from an X-ray binary. This strongly affects how the accreting object and its companion star revolve around each other, moving closer on a timescale of billions of years until they eventually collide and produce a burst of gravitational waves. Secondly, jets slam into the interstellar medium; the gas that fills the space between stars in galaxies and in which new stars are born. As jets plough through the interstellar medium, the gas is stirred up, heated, and magnetized. This affects the birth rate of new stars and how the galaxy evolves over time. Despite their omnipresence and undisputed importance, however, it remains a mystery how and where jets are launched.

Owing to a Klein-XS grant from NWO, a funding scheme recently installed to support high risk/high gain research, we are going to conduct a very exciting experiment that can potentially shed new light on how jets form. Considering that change is a very powerful diagnostic in astrophysics, my co-workers and I are going to test whether jets may be temporarily destroyed and rebuild in response to thermonuclear X-ray bursts.

Thermonuclear X-ray bursts are brief flashes of X-ray emission that result from runaway nuclear fusion reactions in the gas that accumulates on the surface of an accreting neutron star. These explosions have a devastating power of 1032 Joule (equal to 1015 nuclear bombs!), last a few seconds and repeat every few hours. Recent calculations suggests that thermonuclear bursts can blow away the region where a jet is launched. This could cause the jet to weaken or disappear during a thermonuclear X-ray burst, and rebuild once the explosion has passed. If we can truly detect an response of the radio jet to a thermonuclear bursts, this can prove to be a completely new and powerful way to watch in real time how jets are formed.

Jets emit their energy mainly at radio wavelengths, and are best studied at frequencies of about 8 GHz with sensitive radio telescopes. With the awarded NWO grant, we will buy observing time on the Australia Telescope Compact Array (ATCA)  telescope to study the radio jets of a few neutron stars that regularly fire off thermonuclear X-ray bursts. We will perform simultaneously X-ray observations with the Integral satellite to know at what times the thermonuclear bursts are occurring. If we see any change in the radio emission at those times, this implies that the explosions can indeed affect the radio jet. Stay tuned!

News items: NWO and NOVA

rxsj1804_xmm_bursts

An X-ray observation of an accreting neutron star that shows highly repetitive thermonuclear X-ray bursts. The 11 distinct spikes of X-ray emission each represent a single thermonuclear X-ray burst. These powerful explosions can likely repeatedly destruct or weaken the radio jet.

Changing emission mechanisms

X-ray binaries, in which a neutron star or black hole swallows gas from a companion star, have been known since the dawn of X-ray astronomy in the 1960s. With decades of studies, using many different space-based and ground-based telescopes across the electromagnetic spectrum, we have learned many things about how neutron stars and black holes accrete gas. Nearly all of this knowledge has been assembled for stages during which X-ray binaries are rapidly accreting gas, making them shine bright at all wavelengths and hence can easily be studied. However, most X-ray binaries spend only a fraction of their time being bright and rapidly accreting; the far majority of their time their gas consumption occurs at a very low level. Because X-ray binaries are much dimmer when accreting slowly, it is much more challenging to study them. Our standard  models predict that accretion proceeds very differently at low rates, but we have hardly any observational constraints to test and further develop models of low-level accretion.

There are many different components in an X-ray binary that emit electromagnetic radiation. One of the prime emission components is the accretion disk that, depending on its physical properties like its temperature, radiates at X-ray, UV, optical and near-infrared wavelengths. At low accretion rates, however, theory predicts that this disk evaporates into a more extended hot flow that may emit energy at the same wavelengths as the disk. Apart from the accretion stream, be it a disk or a hot flow, the companion star also emits UV, optical and near-infrared emission  (depending on what type of star it is and whether it is being irradiated by the accretion flow), whereas X-ray binaries also launch jets that can be detected at radio and near-infrared wavelengths, but possibly also in the optical, UV and X-ray bands too. Disentangling the different emission components, and finding which one(s) dominate(s) the total observed emission, can be a powerful way to obtain details about the accretion process. This is not an easy task, however, because for each different wavelength we (generally) need different telescopes and it’s very challenging to coordinate different observatories.

The Swift satellite is a very important observatory to study X-ray binaries. This is for two reasons. Firstly, it is a relatively small satellite that can easily maneuver around, allowing us to take frequent snapshots of sources (which is not possible for bigger satellites). Secondly, Swift carries both an X-ray telescope and a UV/optical telescope, which can observe an astrophysical object at the same time. Combined with its good sensitivity, this makes that Swift is a powerful tool to study how the accretion flow in X-ray binaries changes when it moves (quickly!) from high to low accretion rates. We attempted such a dedicated study for the well-known neutron star X-ray binary Aquila X-1 (aka Aql X-1).

Using Swift data from the NASA archives that covered three different accretion outbursts of Aql X-1, we studied how the X-ray, UV and optical emission changed as the source evolved between high and low accretion rates. We found that the X-ray and UV/optical emission always change together, but that this happens in a different manner when Aql X-1 is bright than when it is fading. This implies that the dominant mechanism producing UV and optical emission changes during the decay of an outburst, as is expected from accretion theory. It might be a hint that an accretion disk is changing into a hot flow, or that the properties of the accretion disk are changing otherwise. Moreover, we found that the UV and optical emission behaves differently during the rise of an outburst than during the decay. This suggests that the accretion flow may have different properties at the start and the end of an outburst. This investigating has exposed some interesting behavior that warrants follow-up by performing similar studies for other X-ray binaries or using additional observatories.

López-Navas, Degenaar, Parikh, Hernández Santisteban, van den Eijnden 2020, MNRAS 493, 940: The connection between the UV/optical and X-ray emission in the neutron star low-mass X-ray binary Aql X-1

Paper link: ADS

14U_fits

The X-ray and UV flux of Aql X-1 over an entire outburst. It can be seen that the emission at the two wavelengths is coupled in a different manner when the source is bright than when it is faint. Moreover, the UV flux is fainter during the decay (yellow/green points) than during the rise (blue/purple points) of the outburst.

Puffing up the accretion flow

X-ray binaries are most easily studied when they are devouring a lot of gas and therefore produce bright radiation at X-ray, UV, optical, infrared and radio wavelengths. During such outburst episodes, the gas that is being stripped off from the companion forms a disk that swirls around the black hole or neutron star. We think that this accretion disk extends very close to the cannibal star, maybe even touching it.

During quiescent episodes, X-ray binaries are consuming much less gas and are therefore orders of magnitude dimmer at all wavelengths. Current theories of accretion prescribe that during quiescence, the accretion disk cannot extend close to the black hole or the neutron star and must lie (tens of) thousands of kilometers away. In between the edge of this disk and the compact star, the gas flow might be very hot and vertically extended. However, because this gas is very tenuous and not producing strong radiation, it is very hard to test this idea with observations.

Accretion theory thus predicts that as an X-ray binary starts to fade from outburst to quiescence, the geometry of the accretion flow is strongly changing. However, it is highly challenging to measure this because 1) it’s not predictable exactly when X-ray binaries transition to quiescence, 2) once they do, the transition happens very rapidly, typically on a timescale of 1-2 weeks, and is therefore easy to miss, and 3) as X-ray binaries decay into quiescence they become increasingly dim and therefore long/sensitive observations are needed in order to study the properties of the accretion stream. Ready to take up this challenge, we recently designed an ambitious observing campaign aimed to reveal the changing accretion flow in an X-ray binary called 4U 1608-52.

One powerful way to measure the location of the inner edge of an accretion disk is X-ray reflection. This produces prominent emission features at certain X-ray energies that can be studied with sensitive X-ray telescope. NuSTAR is one of the telescopes that is optimally suited to study X-ray reflection. In a previous study, we observed the X-ray binary 4U 1608-52 during one of its accretion outbursts. Our NuSTAR observation revealed a beautiful X-ray reflection spectrum that allowed us to determine that the accretion disk was extending very close to the neutron star. Taking advantage of the fact that 1) this X-ray binary goes into outburst once every few years (opposed to some sources for which we have observed only 1 outburst over 5 decades), and 2) it produces a very strong reflection spectrum, we designed an observing campaign to capture the source again with NuSTAR, but then at a factor ~10 lower luminosity. The main aim was to use the reflection spectrum to determine if with this change in brightness, the accretion geometry changes a lot.

When our target 4U 1608-52 was seen to enter a new accretion outburst in 2018, we closely monitored how its brightness evolved by looking at the data obtained with the Japanese MAXI X-ray telescope that is installed on the International Space Station. Once MAXI showed that the X-ray brightness of 4U 1608-52 was decreasing, we performed observations with the much more sensitive Swift and NICER telescopes. This allowed us to continue watching our target once it became too faint to be detected with MAXI. We analyzed each new Swift observation immediately after it was performed and tried to predict how the brightness of our target would decay onward. With a few days lead time, we then triggered our NuSTAR observation, hoping that it would observe our target at exactly the right time.

After an intense 2 weeks of watching 4U 1608-52 closely every day, we succeeded to have NuSTAR point to our target at exactly the right time. Interestingly, our new NuSTAR observation showed that with a factor ~10 change in brightness, the reflection spectrum completely disappeared. We think that this is because the accretion flow is changing from a (flat) disk into a hot (spherical) structure. This constitutes one of the very few observations that supports standard accretion models, so we are very excited about these results.

van den Eijnden, Degenaar, Ludlam, Parikh, Miller, Wijnands, Gendreau, Arzoumanian, Chakrabarty, Bult, 2020, MNRAS 493, 1318: A strongly changing accretion morphology during the outburst decay of the neutron star X-ray binary 4U 1608-52

Paper link: ADS

4U1608_combi

NICER and NuSTAR spectra of 4U1608-52. The left panel shows the data obtained during several instances along the 2018 outburst. Data obtained during the 2014 outburst is shown for comparison. A prominent feature can be seen between 5 and 10 keV that is referred to as the iron (Fe-K) line and gives information about the accretion geometry. The right panel shows that this emission feature disappears during the decay of the outburst, which shows that there is a dramatic change in the accretion flow.

 

 

 

 

Astrophysical pollution

The outflows, i.e. the jets and disk winds, that are produced by accreting black holes and neutron stars can potentially have a significant impact on the environment of X-ray binaries. The space in between stars and binary star systems is not empty: it’s filled with tenuous gas and dust that is referred to as the interstellar medium (ISM). Jets and disk winds can slam into this ISM, thereby stirring it and heating it. Moreover, extremely powerful thermonuclear X-ray bursts may eject material into the surroundings of the neutron star and create the same effect. These interactions can may have far-reaching consequences, perhaps influencing the formation of stars and thereby influence the evolution of the entire galaxy. However, it is not yet established if the majority of X-ray binaries truly impact their surroundings; this likely depends on the power of the outflows and the density of the ISM.

Whether or not an X-ray binary interacts with its environment may be determined by looking for shocks in the surrounding ISM. Such shocks produce ionized radiation that are characterized by strong emission lines, e.g. one produced by hydrogen gas at a wavelength of 650 nm (H-alpha emission). Some telescopes are equipped with filters that allow you to look at such a specific wavelength; by taking images with a H-alpha filter, shocked regions around X-ray binaries may be revealed. In addition, a camera with a very wide field of view is required, because the shocked regions may be lying quite far away from the X-ray binaries (and hence would be missed when looking with a camera that has a narrow field of view).

Determined to find out if X-ray binaries generally create shocks in their surroundings, we set up a very large campaign to take H-alpha images of many tens of X-ray binaries. For this purpose we are using the Wide Field Camera (WFC) mounted on the Isaac Newton Telescope that is located on La Palma, Spain. To be able to also access X-ray binaries that are located in the Southern hemisphere,  we are also using the Las Cumbres Observatory, which consists of network of telescopes located across the globe, and the Very Large Telescope located in Chile. To pull off this massive observing campaign, my group and I are joining forces with researchers from the University of Sounthampton in the United Kingdom, St Andrews University in Schotland, the Instituto de Astrofísica de Canarias in Spain, and New York University Abu Dhabi in the United Arab Emirates. Stay tuned for the results!

INT_bigger

The Isaac Newton Telescope on La Palma. Photo credit: see here

A mysterious source of heat

Understanding how neutron stars look like on the inside, i.e. what their structure is and what they are made of, is one of the main challenges of modern astrophysics. There are several different ways through which we try to unravel this. One avenue is to measure how the temperature of neutron stars evolve after they have been eating.

Humans gain energy by eating and so do neutron stars. The meal of a neutron star consists of gas that is supplied by a companion star. By consuming this gas, the outer layers of a neutron star get heated up. Once they stop eating, this gained energy is  radiated away and therefore the neutron star cools down again. How hot neutron stars become during their dinners, and how quickly they cool afterwards, depends strongly on their interior properties.

We use sensitive X-ray telescopes to measure how the temperature of neutron stars evolve after they have been consuming gas from their companion. Such studies have revealed that many neutron stars are much more strongly heated during their dinners than is predicted by theoretical models. This is referred to as the shallow heating problem, because the heat appears to be generated just below the surface of the neutron star. It has puzzled us for over a decade now where this shallow heat comes from.

In a previous study, we proposed that the well-known neutron star X-1 in the constellation Aquila, aka Aql X-1, could provide the key to unravel the mysterious source of shallow heat. This neutron star feasts off its companion about once a year and its heating and cooling can thus be studied and compared after multiple dinners.

Using the Chandra and Swift satellites, we studied Aql X-1 after three meals (in 2011, 2013 and 2016) that were very similar. Since the neutron star consumed approximately the same amount of gas during these three episodes, we expected that it would have been heated to similar extend and hence cool in the same way. However, we found that the temperature of the neutron star was strikingly different after its 2016 dinner than after the other two. Within our current understanding of heating and cooling of neutron stars, it is very difficult to understand why its temperature should be so different.

Instead of unraveling the mysterious source of shallow heat, our dedicated study of Aql X-1 seems to have further complicated the picture. We thus have to go back to the drawing board to think of a new experiment to find out what causes the shallow heat inside of neutron stars.

Degenaar, Ootes, Page et al. 2019, MNRAS in press: Crust cooling of the neutron star in Aql X-1: Different depth and magnitude of shallow heating during similar accretion outbursts

Paper link: ADS

aqlx1_cool_3outbursts

The observed temperature of the neutron star in Aql X-1 after three different outbursts. Although the outbursts were very similar and we thus expected the neutron star to heat up and cool down in the same way, the temperature evolution after the 2016 outburst (black stars) was very different from that seen after the 2011 (red circles) and 2013 (blue squares) outbursts.

Don’t overfeed the neutron star

The laws of physics dictate that there is a maximum amount of food that neutron stars and black holes can digest. Once you reach the so-called Eddington limit, the radiation that is produced by the consumption of gas becomes so strong that it blows away the in-falling material. Theoretically, it is therefore predicted that if you overfeed a neutron star or a black hole, strong outflows are produced: in the regime of super-Eddington accretion, we expect both jets and winds to be created. Jets are usually detected at radio wavelengths, whereas winds often reveal themselves as narrow absorption lines in high-resolution X-ray spectra.

There are a number of neutron stars and black holes identified that are likely accreting at very high rates. Most of these are located in other galaxies, and referred to as ultra-luminous X-ray sources (ULXs), because the high rate of food consumption makes them very bright X-ray emitters. For several of these ULXs, signatures of disk winds have been detected. A few other ULXs have radio bubbles around them that suggest that these objects are producing strong jets. However, to date there is no ULX known that is known to produce both winds and jets at the same time. It therefore remains to be established if super-Eddington accretion indeed causes both types of outflows.

Swift J0243.6+6124 is an accreting neutron star that is located in our Milky Way galaxy and was discovered in late 2017 when it suddenly started to feed of its companion star. Following its discovery, the object kept brightening until after a few weeks it reached super-Eddington accretion rates. We previously detected a jet from this neutron star using the Very Large Array (VLA) radio telescope. Following this detection, and known that the source was in the super-Eddington regime, we also requested high-resolution X-ray observations with the Chandra telescope with the aim to search for the presence of a disk wind.

Detecting a disk wind in Swift J0243.6+6124 was not an easy task because it was so overwhelmingly bright that it was causing issues for all X-ray satellites: just as the NS cannot eat fast enough, our X-ray detectors couldn’t process the light received from the source fast enough. Luckily, Chandra could be operated in a very special setting that allowed us to look at the source anyway. Excitingly, the spectra that we obtained with Chandra contained a number of narrow absorption lines that can arise from a disk wind. The properties of these absorption lines suggest that the wind is blown away from the neutron star at a dazzling speed of 20% of the speed of light: a speed of about 200 million kilometers per hour! Similar wind speeds have been measured for ULXs in other galaxies.

Our Chandra and VLA observations thus revealed that indeed jets and winds are produced at the same time in the super-Eddington accretion regime, just like theory predicts.

van den Eijnden, Degenaar, Schulz et al. 2019, MNRAS 487, 4355: Chandra reveals a possible ultrafast outflow in the super-Eddington Be/X-ray binary Swift J0243.6+6124 

Paper link: ADS

Spacecraft labled new 2019

Schematic overview of the Chandra X-ray satellite, with which we performed this research. Image credit: NASA