The effects of a violent thermonuclear burst

Thermonuclear X-ray bursts manifest themselves as intense flashes of X-ray emission that have a duration of seconds to hours, during which a total energy of approximately 1039 to 1042 erg is radiated. These events are caused by unstable thermonuclear burning that transforms hydrogen and/or helium that has falling onto the surface of a neutron star into heavier chemical elements. X-ray bursts are a unique signature of neutron stars in low-mass X-ray binaries. In such interacting binary star systems, a Roche-lobe overflowing late-type companion star feeds matter to the compact object via an accretion disk.

There is a delicate connection between the properties of X-ray bursts and that of the accretion flow. On the one hand, the rate at which mass is accreted onto the neutron star determines the duration, recurrence time, and radiated energy of the X-ray bursts, whereas the accretion geometry can strongly influence the observable properties. On the other hand, it has been proposed that particularly powerful X-ray bursts may be able to influence the accretion flow.

IGR J17062-6143 is an X-ray source that was discovered in 2006, but remained unclassified until the Burst Alert Telescope onboard the Swift satellite detected an X-ray burst in 2012. This unambiguously identified IGR J17062-6143 as a neutron star low-mass X-ray binary. But not just any ordinary neutron star. The X-ray burst was highly energetic (classifying as a so-called intermediately long X-ray burst), and displayed three very unique features that indicate that the explosion was violent enough to disrupt the accretion disk surrounding the neutron star.

Firstly, the 18-min long X-ray burst displayed dramatic, irregular intensity variations that were clearly visible in the X-ray light curve. Similar fluctuations have only been seen on a handful of occasions. They are likely caused by swept-up clouds of gas or puffed-up structures in the accretion disk. The time-scale of the fluctuations suggest this gas is located at a distance of approximately 103 km from the neutron star. Secondly, the X-ray spectrum of the X-ray burst showed a highly significant emission line around an energy of 1 keV (most likely a Fe-L shell line). This emission feature can be explained as irradiation of relatively cold gas. The width of the line suggests that this material is located at a distance of 103 km from the neutron star. Thirdly, significant absorption features near 8 keV were present in the X-ray spectrum (in the Fe-K band). These likely result from hot, ionized gas along the line of sight. Fitting these features with photo-ionization models points towards a similar radial distance as inferred from the emission line and the light curve fluctuations. Spectral emission and absorption features have never been (unambiguously) detected during an X-ray burst, making this a highly exciting discovery.

In conclusion, three independent observational features suggest that the energetic X-ray burst from IGR J17062-6143 swept up gas along our line of sight, out to a distance of roughly 1000 km from the neutron star (approximately 50 gravitational radii). This provides strong evidence  that powerful X-ray bursts can indeed disrupt the (inner) accretion disk.

Degenaar, Miller, Wijnands, Altamirano, Fabian 2013, ApJ 767, L37: X-Ray Emission and Absorption Features during an Energetic Thermonuclear X-Ray Burst from IGRJ17062-6143

Paper link: ADS

An artist impression of an interacting binary. Image credits: David. A. Hardy / STFC

An artist impression of an interacting binary.
Image credits: David. A. Hardy / STFC